The optimal fraction of hydrophobic residues required to ensure protein collapse.

نویسندگان

  • Jiangbo Miao
  • Judith Klein-Seetharaman
  • Hagai Meirovitch
چکیده

The hydrophobic interaction is the main driving force for protein folding. Here, we address the question of what is the optimal fraction, f of hydrophobic (H) residues required to ensure protein collapse. For very small f (say f<0.1), the protein chain is expected to behave as a random coil, where the H residues are "wrapped" locally by polar (P) residues. However, for large enough f this local coverage cannot be achieved and the thermodynamic alternative to avoid contact with water is burying the H residues in the interior of a compact chain structure. The interior also contains P residues that are known to be clustered to optimize their electrostatic interactions. This means that the H residues are clustered as well, i.e. they effectively attract each other like the H-monomers in Dill's HP lattice model. Previously, we asked the question: assuming that the H monomers in the HP model are distributed randomly along the chain, what fraction of them is required to ensure a compact ground state? We claimed there that f approximately p(c), where p(c) is the site percolation threshold of the lattice (in a percolation experiment, each site of an initially empty lattice is visited and a particle is placed there with a probability p. The interest is in the critical (minimal) value, p(c), for which percolation occurs, i.e. a cluster connecting the opposite sides of the lattice is created). Due to the above correspondence between the HP model and real proteins (and assuming that the H residues are distributed at random) we suggest that the experimental f should lead to percolating clusters of H residues over the highly dense protein core, i.e. clusters of the core size. To check this theory, we treat a simplified model consisting of H and P residues represented by their alpha-carbon atoms only. The structure is defined by the C(alpha)-C(alpha) virtual bond lengths, angles and dihedral angles, and the X-ray structure is best-fitted onto a face-centered cubic lattice. Percolation experiments are carried out for 103 single-chain proteins using six different hydrophobic sets of residues. Indeed, on average, percolating clusters are generated, which supports our theory; however, some sets lead to a better core coverage than others. We also calculate the largest actual hydrophobic cluster of each protein and show that, on average, these clusters span the core, again in accord with our theory. We discuss the effect of protein size, deviations from the average picture, and implications of this study for defining reliable simplified models of proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulating the minimum core for hydrophobic collapse in globular proteins.

To investigate the nature of hydrophobic collapse considered to be the driving force in protein folding, we have simulated aqueous solutions of two model hydrophobic solutes, methane and isobutylene. Using a novel methodology for determining contacts, we can precisely follow hydrophobic aggregation as it proceeds through three stages: dispersed, transition, and collapsed. Theoretical modeling o...

متن کامل

Arabidopsis leaf plasma membrane proteome using a gel free method: Focus on receptor–like kinases

The hydrophobic proteins of plant plasma membrane still remain largely unknown.  For example in the Arabidopsis genome, receptor-like kinases (RLKs) are plasma membrane proteins, functioning as the primary receptors in the signaling of stress conditions, hormones and the presence of pathogens form a diverse family of over 610 genes. A limited number of these proteins have appeard in pr...

متن کامل

Cloning and characterization of MAP2191 gene, a mammalian cell entry antigen of Mycobacterium avium subspecies paratuberculosis

The aim of this study is to identify, clone and express a Mycobacterium avium subsp. paratuberculosis specific immunogenic antigen candidate, in order to develop better reagents for diagnosis and vaccines for the protection of the host. Therefore, MAP2191 gene (a member of MAPmce5 operon) from MAP, was isolated and characterized by Bioinformatics tools and <e...

متن کامل

In-silico Investigation of Tubulin Binding Modes of a Series of Novel Antiproliferative Spiroisoxazoline Compounds Using Docking Studies

Interference with microtubule polymerization results in cell cycle arrest leading to cell death. Colchicine is a well-known microtubule polymerization inhibitor which does so by binding to a specific site on tubulin. A set of 3',4'-bis (substituted phenyl)-4'H-spiro[indene-2,5'-isoxazol]-1(3H)-one derivatives with known antiproliferative activities were evaluated for their tubulin binding modes...

متن کامل

In-silico Investigation of Tubulin Binding Modes of a Series of Novel Antiproliferative Spiroisoxazoline Compounds Using Docking Studies

Interference with microtubule polymerization results in cell cycle arrest leading to cell death. Colchicine is a well-known microtubule polymerization inhibitor which does so by binding to a specific site on tubulin. A set of 3',4'-bis (substituted phenyl)-4'H-spiro[indene-2,5'-isoxazol]-1(3H)-one derivatives with known antiproliferative activities were evaluated for their tubulin binding modes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 344 3  شماره 

صفحات  -

تاریخ انتشار 2004